统计量的抽样分布 |
|
总体参数虽然是未知的,但可以利用样本信息来推断。例如,我们从上述研究地区随机抽取400人组成一个样本,根据这400人的平均收入推断该地区所有人口的平均收入。这里400人的平均收入就是一个统计量(statistic),它是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。因此,统计量是不含任何未知参数的样本的函数。由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也是随机的。所以理论上在抽样中,统计量是一个随机变量。
由样本统计量这个随机变量所形成的概率分布就是抽样分布(sampling distribution),即抽样分布就是统计量的分布,如样本均值的分布,样本比例的分布等。但当样本抽取出来以后,样本值就是已经观察到的值,这个样本的统计量就是已知的某个确定的值,是随机变量的一次实现值。
样本统计量可以看做是样本的函数,并且构成样本统计量的函数中不能包含未知参数。就一个样本而言,我们关心的统计量通常有样本均值( |
打印 关闭 |